|  |  GeoAstro Applets |  Astronomy |  Chaos Game |  Java |  Miscel- laneous | 
Random Walk Applet
        
      
| 1 dimension: The blue point is moving on a line with integer coordinates:  The 2 directions of a single step: x+1, x-1 2 dimensions: The blue point is moving in a plane with integer coordinates:  The 4 directions of a single step: x+1, x-1, y+1, y-1 | 
|   | select from the menu | 
|   | button starting a single walk, maximum of n=1000 steps, the diagram at the bottom is showing the distances d(n) button to stop the walk | 
1 dimension:
        
         An interesting question arising in the
              study of random walks concerns
              the probability of returning to the initial position
              (origin, "equalization").
            
The probability P(n) of return to origin at step n (n even) is:
 
        
                For large n (even):
              
 
          
Graph of the first (strict) formula:
            

      
---
      
Applet results:
  
        
        
          
        The total number of
                returns to origin (within a fixed number n of steps) is
                proportional
                to the number N of walks:
            
           
        
        The probalibity for n=100 steps is 0.076
        2
                        dimensions:
                      
Example:
        






|  | button starting a set of N walks | 
|   | the numbers of steps and walks can be selected from the menus | 



| Books | 
| Küppers, Bernd-Olaf: Die Berechenbarkeit
                  der Welt, Grenzfragen der exakten Wissenschaften. S.
                  Hirzel, Stuttgart 2012. Entropie und Zeitstruktur, S. 200-210 Eigen, Manfred, and Winkler, Ruth: Das Spiel, Naturgesetze steuern den Zufall. Pieper, München 1975. Kapitel 4:Statistische Kugelspiele | 
|  | 
| Random
                  Walk--1-Dimensional (Wolfram MathWorld) Random Walk--2-Dimensional (Wolfram MathWorld) A 1D Random Walk Visits The Origin Infinitely Often | 
Updated: 2023, Oct 06
          
