|  |  GeoAstro Applets |  Astronomy |  Chaos Game |  Java |  Miscel- laneous | 
|  The Scottish
                  historian and writer Thomas Carlyle (1795-1881)
                  devised an elegant geometrical solution to quadratic
                  equations, based on the "Carlyle circle". x2
                    + px + q = 0 The circle with the segment joining the points (0|1) and (p|q) as diameter is intersecting the p-axis, and the abscissae of these ponts of intersection are the required roots of the quadratic equation. In 1867 by the Austrian captain of engineering Eduard Lill published a visual method of finding the real roots of polynomials of any degree. | 
|  | Checking the box will
                mark certain points (p|q): - p and q are multiples of the raster size, and - the roots x1 and x2 are multiples of the raster size. | 
|  | Select the
                raster size, or a continuous mode ("Raster off"). A table of p, q, x1, x2 is available by "Data Window". | 
|  | 
| Geometric
                      Construction of Roots of Quadratic Equation (Cut
                      The Knot) Carlyle
                    Circle (Wolfram MathWorld) Carlyle Circle (Wolfram Demonstrations Project) Applet
                      showing Lill's method applied to quadratic
                      equations D. Tournès:
                      Constructions d'équation algébriques et
                      différentielles T.
                    C. Hull: Solving Cubics With Creases: The Work of
                    Beloch and Lill (PDF) D. W.
                      DeTemple: Carlyle Circles and the Lemoine
                      Simplicity of Polygon Constructions (PDF) | 
| R. Kaendes, R. Schmidt (Hrsg.): Mit GeoGebra mehr Mathematik verstehen, Vieweg+Teubner, 2011, ISBN 978-3-8348-1757-0. A. Baeger: Eine geometrische Lösung der quadratischen Gleichung x2 + px + q = 0, in: CASIO Forum 1/2012, CASIO Europe. E. J. Barbeau: Polynomials, Springer New York Heidelberg Berlin 2003, ISBN 0-387-40627-1, 978-0387-406275. E. John Hornsby: Geometrical and Graphical Solutions of Quadratic Equations, The College Mathematics Journal, 1990, Volume 21, Number 5, p. 362-369. | 
